CMOS DRAM

1M x 16Bit CMOS Dynamic RAM with Extended Data Out

DESCRIPTION

This is a family of 1,048,576 x 16 bit Extended Data Out CMOS DRAMs. Extended Data Out Mode offers high speed random access of memory cells within the same row, so called Hyper Page Mode. Power supply voltage (+5.0V or +3.3V), refresh cycle (1K Ref. or 4K Ref.), access time (-45, -5 or -6), power consumption(Normal or Low power) and package type(SOJ or TSOP-II) are optional features of this family. All of this family have CAS-before-RAS refresh, RAS-only refresh and Hidden refresh capabilities. Furthermore, Self-refresh operation is available in L-version. This 1Mx16 EDO Mode DRAM family is fabricated using Samsung s advanced CMOS process to realize high band-width, low power consumption and high reliability. It may be used as graphic memory unit for microcomputer, personal computer and portable machines.

FEATURES

Part Identification

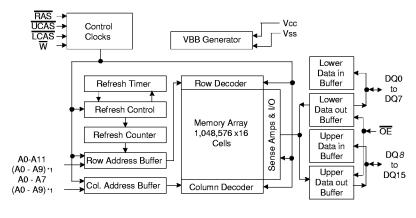
- KM416C1004C/C-L (5V, 4K Ref.)
- KM416C1204C/C-L (5V, 1K Ref.)
- KM416V1004C/C-L (3.3V, 4K Ref.)
- KM416V1204C/C-L (3.3V, 1K Ref.)

Active Power Dissipation

Speed	3.	3V	5V			
opeed	4K 1		4K	1K		
-45	-	-	550	825		
-5	324	504	495	770		
-6	288	468	440	715		

Unit : mW

Refresh Cycles


Part NO.	Vcc	Refresh cycle	Refrest Normal	n period L-ver
C1004C	5V	-		2 101
V1004C	3.3V	4K	64ms	128ms
C1204C	5V	1K	16ms	120115
V1204C	3.3V		Toms	

Performance Range

Speed	trac	tcac	tRC	thpc	Remark
-45	45ns	13ns	69ns	16ns	5V/3.3V
-5	50ns	15ns	84ns	20ns	5V/3.3V
-6	60ns	17ns	104ns	25ns	5V/3.3V

- Extended Data Out Mode operation (Fast Page Mode with Extended Data Out)
- 2 CAS Byte/Word Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- Self-refresh capability (L-ver only)
- TTL(5V)/LVTTL(3.3V) compatible inputs and outputs
- · Early Write or output enable controlled write
- JEDEC Standard pinout
- · Available in plastic SOJ 400mil and TSOP(II) packages
- Single +5V±10% power supply (5V product)
- Single +3.3V±0.3V power supply (3.3V product)

FUNCTIONAL BLOCK DIAGRAM

Note) *1 : 1K Refresh

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

CMOS DRAM

KM416C1004C, KM416C1204C KM416V1004C, KM416V1204C

PIN CONFIGURATION (Top Views)

• KM416C/V10(2)04CJ

• KM416C/V10(2)04CT

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vcc II 1 ° DQ0 II 2 DQ1 II 2 DQ1 II 4 DQ3 II 5 Vcc II 6 DQ4 II 7 DQ5 II 8 DQ6 II 9 DQ7 II 10 N.C II 11 N.C II 12 N.C II 12 N.C II 13 W II 14 RAS II 15 *A110(N.C) II 16 *A10(N.C) II 17 A0 II 19 A2 II 20 A3 II 22 Z2	44 II Vss 43 II DQ15 42 II DQ14 41 II DQ13 40 II DQ12 39 II Vss 38 II DQ11 37 II DQ10 36 II DQ9 35 II DQ8 34 II N.C 33 II II UCAS 30 II OE 29 II A9 28 II A8 27 II A7 26 II A6 25 II A4 23 II Vss
---	--	---

*A10 and A11 are N.C for KM416C/V1204C(5V/3.3V, 1K Ref. product)

J : 400mil 42 SOJ

T : 400mil 50(44) TSOP II

Pin Name	Pin Function
A0 - A11	Address Inputs (4K Product)
A0 - A9	Address Inputs (1K Product)
DQ0 - 15	Data In/Out
Vss	Ground
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
$\overline{\mathbf{w}}$	Read/Write Input
OE	Data Output Enable
Vcc	Power(+5V)
¥00	Power(+3.3V)
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Units	
	Symbol	3.3V	5V	Units
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to +4.6	-1.0 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	-1.0 to +7.0	V
Storage Temperature	Tstg	-55 to +150	-55 to +150	°C
Power Dissipation	PD	1	1	W
Short Circuit Output Current	los	50	50	mA

* Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA= 0 to 70°C)

Parameter	Symbol		3.3V			5V		Units			
Farameter	Symbol	Min	Тур	Max	Min	Тур	Max	Units			
Supply Voltage	Vcc	3.0	3.3	3.6	4.5	5.0	5.5	V			
Ground	Vss	0	0	0	0	0	0	V			
Input High Voltage	Vін	2.0	-	Vcc+0.3 ^{*1}	2.4	-	Vcc+1.0 ^{*1}	V			
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	-1.0 ^{*2}	-	0.8	V			

*1 : Vcc+1.3V/15ns(3.3V), Vcc+2.0V/20ns(5V), Pulse width is measured at Vcc

*2 : -1.3V/15ns(3.3V), -2.0V/20ns(5V), Pulse width is measured at Vss

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Max	Parameter	Symbol	Min	Max	Units
Input Leakage Current (Any input 0≤VIN≤VIN+0.3V, all other input pins not under test=0 Volt)		lı(L)	-5	5	uA
3.3V		IO(L)	-5	5	μA
	Output High Voltage Level(Iон=-2mA)	Vон	2.4	-	V
	Output Low Voltage Level(IoL=2mA)	Vol	-	0.4	V
	Input Leakage Current (Any input 0≤VIN≤VIN+0.5V, all other input pins not under test=0 Volt)	lı(L)	-5	5	μA
5V	Output Leakage Current (Data out is disabled, 0V≤Vou⊤≤Vcc)	IO(L)	-5	5	υA
	Output High Voltage Level(Iон=-5mA)	Vон	2.4	-	V
	Output Low Voltage Level(IoL=4.2mA)	Vol	-	0.4	V

DC AND OPERATING CHARACTERISTICS (Continued)

Symbol	Power	Speed	Мах						
Symbol	Power	Speed	KM416V1004C	KM416V1204C	KM416C1004C	KM416C1204C	Units		
		-45	100	150	100	150	mA		
Icc1	Don t care	-5	90	140	90	140	mA		
		-6	80	130	80	130	mA		
	Normal	Don t care	1	1	2	2	mA		
ICC2	L	Dontcare	1	1	1	1	mA		
		-45	100	150	100	150	mA		
ICC3	Don t care	-5	90	140	90	140	mA		
		-6	80	130	80	130	mA		
		-45	110	110	110	110	mA		
ICC4	Don t care	-5	100	100	100	100	mA		
		-6	90	90	90	90	mA		
ICC5	Normal	Don t care	0.5	0.5	1	1	mA		
1005	L	Dontcare	200	200	200	200	uA		
		-45	100	150	110	150	mA		
ICC6	Don t care	-5	90	140	90	140	mA		
		-6	80	130	80	130	mA		
ICC7	L	Don t care	300	200	350	250	uA		
lccs	L	Don t care	150	150	200	200	uA		

Icc1* : Operating Current (RAS and UCAS, ICAS, Address cycling @tRc=min.)

ICC2 : Standby Current (RAS=UCAS=LCAS=W=VIH)

ICC3* : RAS-only Refresh Current (UCAS=LCAS=VIH, RAS, Address cycling @tRC=min.)

ICC4* : Hyper Page Mode Current (RAS=VIL, UCAS or LCAS, Address cycling @tHPC=min.)

ICC5 : Standby Current (RAS=UCAS=LCAS=W=Vcc-0.2V)

ICC6* : CAS-Before-RAS Refresh Current (RAS, UCAS or LCAS cycling @tRC=min.)

ICC7 : Battery back-up current, Average power supply current, Battery back-up mode Input high voltage(VIH)=Vcc-0.2V, Input low voltage(VIL)=0.2V, UCAS, LCAS=0.2V, DQ=Don t care, TRc=31.25us(4K/L-ver), 125us(1K/L-ver) TRAS=TRASmin~300ns

Iccs : Self Refresh Current

 $\overline{RAS}=\overline{UCAS}=\overline{LCAS}=VIL, \overline{W}=\overline{OE}=A0 \sim A11=Vcc-0.2V \text{ or } 0.2V,$

 $DQ0 \sim DQ15=Vcc-0.2V, 0.2V \text{ or Open}$

*Note: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1, Icc3 and Icc6, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one Hyper page mode cycle time, tHPC.

CAPACITANCE (TA=25°C, VCC=5V or 3.3V, f=1MHz)

Parameter	Symbol	Min	Мах	Units
Input capacitance [A0 ~ A11]	CIN1	-	5	pF
Input capacitance [RAS, UCAS, LCAS, W, OE]	CIN2	-	7	pF
Output capacitance [DQ0 - DQ15]	Cdq	_	7	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 1,2)

Test condition (5V device) : Vcc=5.0V±10%, Vih/Vil=2.4/0.8V, Voh/Vol=2.0/0.8V

Test condition (3.3V device) : Vcc=3.3V±0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V

Devementer	Cumbal		15		5	-	6	Units	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max		Notes
Random read or write cycle time	trc	79		84		104		ns	
Read-modify-write cycle time	trwc	105		115		140		ns	
Access time from RAS	trac		45		50		60	ns	3,4,10
Access time from CAS	tcac		14		15		17	ns	3,4,5
Access time from column address	taa		23		25		30	ns	3,10
CAS to output in Low-Z	tclz	3		3		3		ns	3
Output buffer turn-off delay from CAS	tCEZ	3	13	3	13	3	15	ns	6,19
OE to output in Low-Z	tolz	3		3		3		ns	3
Transition time (rise and fall)	tτ	2	50	2	50	2	50	ns	2
RAS precharge time	tRP	30		30		40		ns	
RAS pulse width	tras	45	10K	50	10K	60	10K	ns	
RAS hold time	trsн	13		13		17		ns	
CAS hold time	tcsн	36		40		50		ns	
CAS pulse width	tcas	7	10K	8	10K	10	10K	ns	18
RAS to CAS delay time	tRCD	19	31	20	35	20	43	ns	4
RAS to column address delay time	trad	14	22	15	25	15	30	ns	10
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	traн	9		10		10		ns	
Column address set-up time	tasc	0		0		0		ns	11
Column address hold time	tсан	7		8		10		ns	11
Column address to RAS lead time	tral	23		25		30		ns	
Read command set-up time	trcs	0		0		0		ns	
Read command hold time referenced to CAS	tвсн	0		0		0		ns	8
Read command hold time referenced to RAS	trrh	0		0		0		ns	8
Write command hold time	twcн	8		10		10		ns	
Write command pulse width	twp	8		10		10		ns	
Write command to RAS lead time	trwL	10		13		15		ns	
Write command to CAS lead time	tcw∟	7		8		10		ns	14

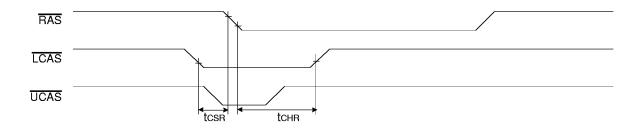
ELECTRONICS

AC CHARACTERISTICS (Continued)

Devemeter	Symbol	-4	15	-	5	-	6	Unito	Notoo
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Data set-up time	tos	0		0		0		ns	9,17
Data hold time	tDH	7		8		10		ns	9,17
Refresh period (1K, Normal)	tref		16		16		16	ms	
Refresh period (4K, Normal)	tref		64		64		64	ms	
Refresh period (L-ver)	tref		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	7
\overline{CAS} to \overline{W} delay time	tcwD	28		32		36		ns	7,13
RAS to W delay time	trwd	59		67		79		ns	7
Column address W delay time	tawd	37		42		49		ns	7
\overline{CAS} precharge to \overline{W} delay time	tcpwd	39		47		54		ns	7
CAS set-up time (CAS -before-RAS refresh)	tcsr	5		5		5		ns	15
CAS hold time (CAS -before-RAS refresh)	t CHR	10		10		10		ns	16
RAS to CAS precharge time	t RPC	5		5		5		ns	
Access time from CAS precharge	t CPA		25		28		35	ns	3
Hyper Page mode cycle time	thpc	18		20		25		ns	18
Hyper Page read-modify-write cycle time	therwc	39		47		56		ns	18
CAS precharge time (Hyper Page cycle)	tCP	7		8		10		ns	12
RAS pulse width (Hyper Page cycle)	trasp	45	200K	50	200K	60	200K	ns	
RAS hold time from CAS precharge	T RHCP	27		30		35		ns	
OE access time	toea		13		13		15	ns	3
OE to data delay	toed	10		13		15		ns	
Output buffer turn off delay time from OE	toez	3	13	3	13	3	15	ns	6
OE command hold time	tоен	10		13		15		ns	
Output data hold time	tdoh	4		5		5		ns	
Output buffer turn off delay from \overline{RAS}	trez	3	13	3	13	3	15	ns	6,19
Output buffer turn off delay from \overline{W}	twez	3	13	3	13	3	15	ns	6
$\overline{\mathbf{W}}$ to data delay	twed	15		15		15		ns	
OE to CAS hold time	tocн	5		5		5		ns	
CAS hold time to OE	tсно	5		5		5		ns	
OE precharge time	toep	5		5		5		ns	
$\overline{\mathbf{W}}$ pulse width (Hyper Page Cycle)	twpe	5		5		5		ns	
\overline{RAS} pulse width (\overline{C} -B- \overline{R} self refresh)	trass	100		100		100		us	20,21,22
\overline{RAS} precharge time (\overline{C} -B- \overline{R} self refresh)	tRPS	79		90		110		ns	20,21,22
\overline{CAS} hold time (\overline{C} -B- \overline{R} self refresh)	tcнs	-50		-50		-50		ns	20,21,22

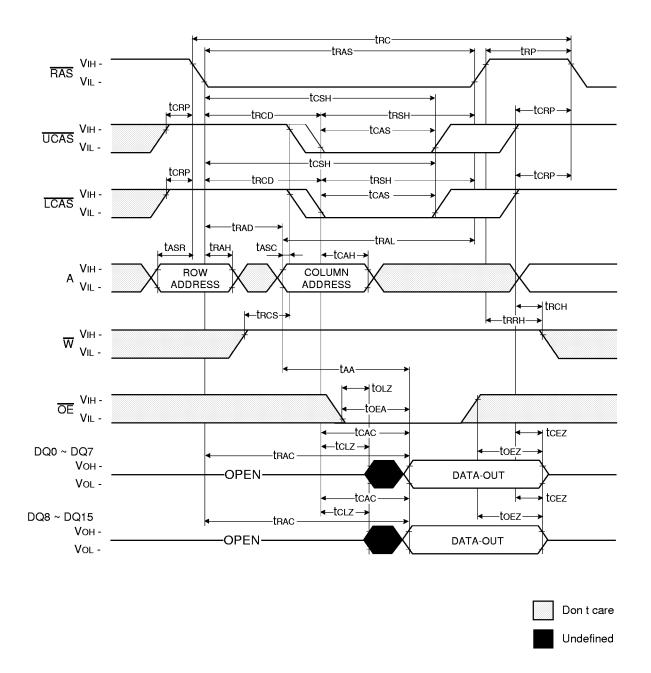
CMOS DRAM

NOTES

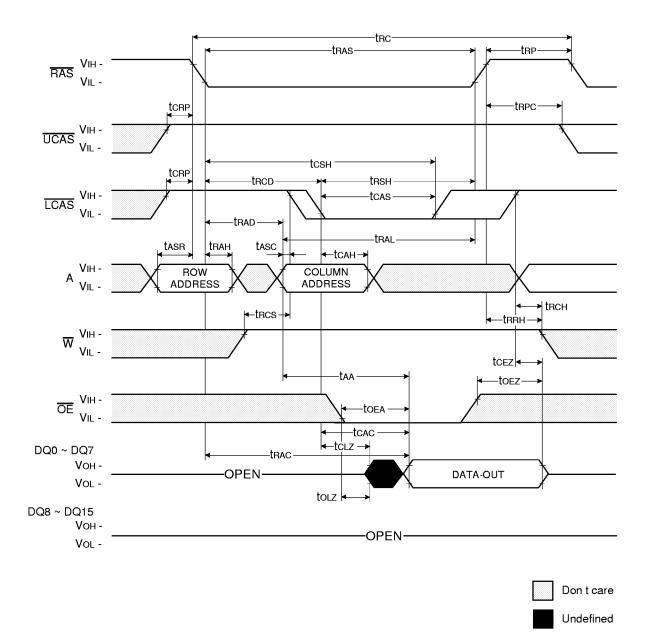

- 1. An initial pause of 200us is required after power-up followed by any 8 RAS-only refresh or CAS-before-RAS refresh cycles before proper device operation is achieved.
- Input voltage levels are Vih/Vil. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 2ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL(5V)/1TTL(3.3V) loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only. If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 7. twcs, tRwD, tcwD, tawD and tcPwD are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs≥twcs(min), the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tcwD≥tcwD(min), tRwD≥tRwD(min), tAwD≥tAwD(min) and tcPwD≥tcPwD(min), then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either tRCH or tRRH must be satisfied for a read cycle.
- 9. These parameters are referenced to CAS falling edge in early write cycles and to W falling edge in OE controlled write cycle and read-modify-write cycles.
- Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as a reference point only.
 If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.

RAS	LCAS	UCAS	W	ŌĒ	DQ0 - DQ7	DQ8-DQ15	STATE
Н	Х	Х	Х	Х	Hi-Z	Hi-Z	Standby
L	Н	Н	Х	Х	Hi-Z	Hi-Z	Refresh
L	L	Н	Н	L	DQ-OUT	Hi-Z	Byte Read
L	Н	L	Н	L	Hi-Z	DQ-OUT	Byte Read
L	L	L	Н	L	DQ-OUT	DQ-OUT	Word Read
L	L	Н	L	Н	DQ-IN	-	Byte Write
L	Н	L	L	Н	-	DQ-IN	Byte Write
L	L	L	L	Н	DQ-IN	DQ-IN	Word Write
L	L	L	Н	Н	Hi-Z	Hi-Z	-

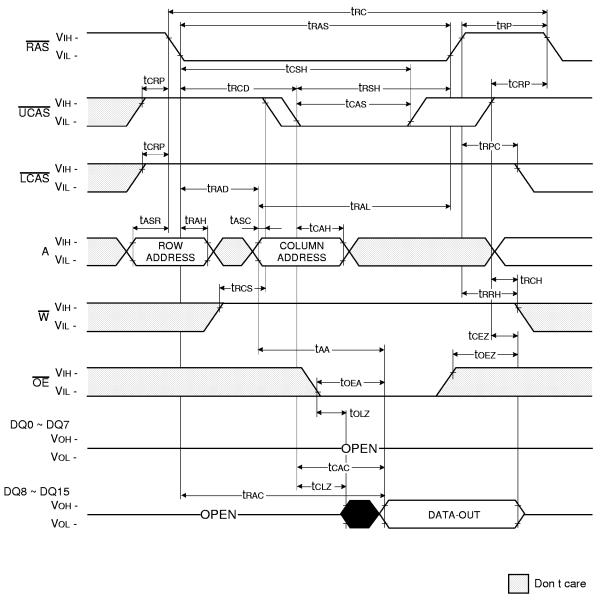
KM416C/V10(2)04C/C-L Truth Table


- 11. tASC, tCAH are referenced to the earlier \overline{CAS} falling edge.
- 12. tcP is specified from the later CAS rising edge in the previous cycle to the earlier CAS falling edge in the next cycle.
- 13. tcwp is referenced to the later \overline{CAS} falling edge at word read-modify-write cycle.
- 14. tCWL is specified from \overline{W} falling edge to the earlier \overline{CAS} rising edge.
- 15. tCSR is referenced to the earlier CAS falling edge before RAS transition low.
- 16. tCHR is referenced to the later CAS rising edge after RAS transition low.

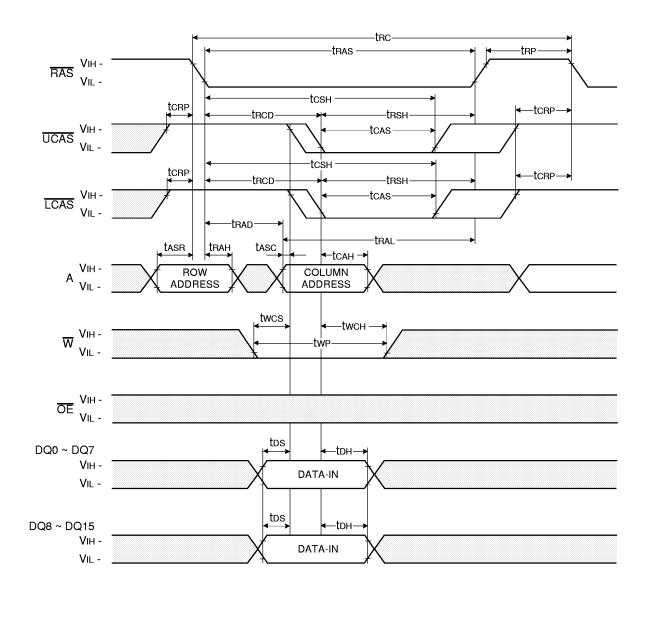
- 17. tDs, tDH is independently specified for lower byte DQ(0-7), upper byte DQ(8-15)
- 18. tASC≥6ns, assume t⊤=2.0ns.
- 19. If RAS goes to high before CAS high going, the open circuit condition of the output is achieved by CAS high going. If CAS goes to high before RAS high going, the open circuit condition of the output is achieved by RAS high going.
- 20. If tRASS≥100us, then RAS precharge time must use tRPs instead of tRP.
- 21. For RAS-only refresh and burst CAS-before-RAS refresh mode, 4096(4K)/1024(1K) cycles of burst refresh must be executed within 64ms/16ms before and after self refresh, in order to meet refresh specification.
- 22. For distributed CAS-before-RAS with 15.6us interval, CAS-before-RAS refresh should be executed with in 15.6us immediately before and after self refresh in order to meet refresh specification.


WORD READ CYCLE

LOWER BYTE READ CYCLE

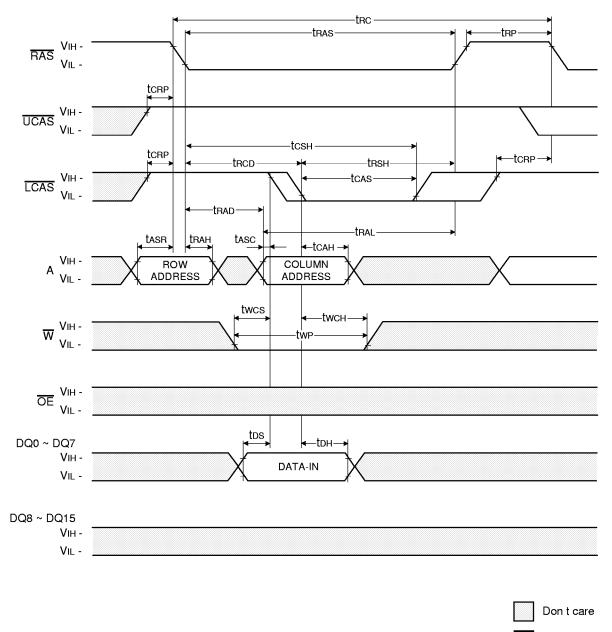

NOTE : DIN = OPEN

UPPER BYTE READ CYCLE


NOTE : DIN = OPEN

Undefined

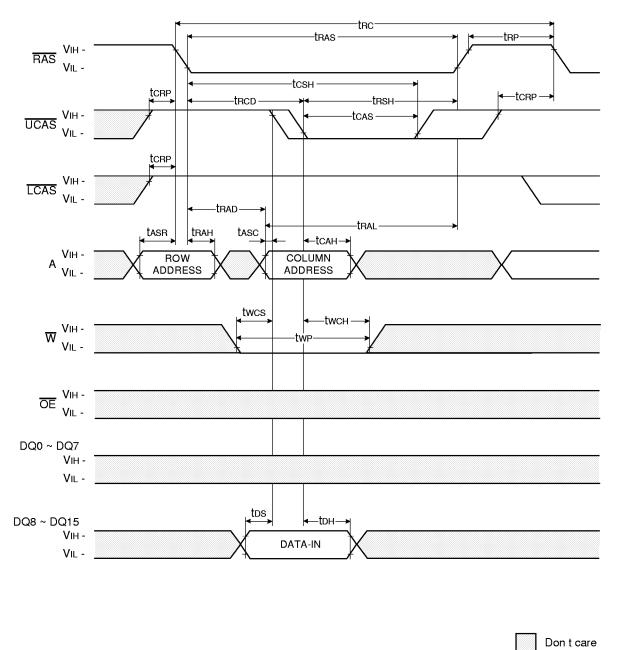
WORD WRITE CYCLE (EARLY WRITE)


NOTE : DOUT = OPEN

Don t care
Undefined

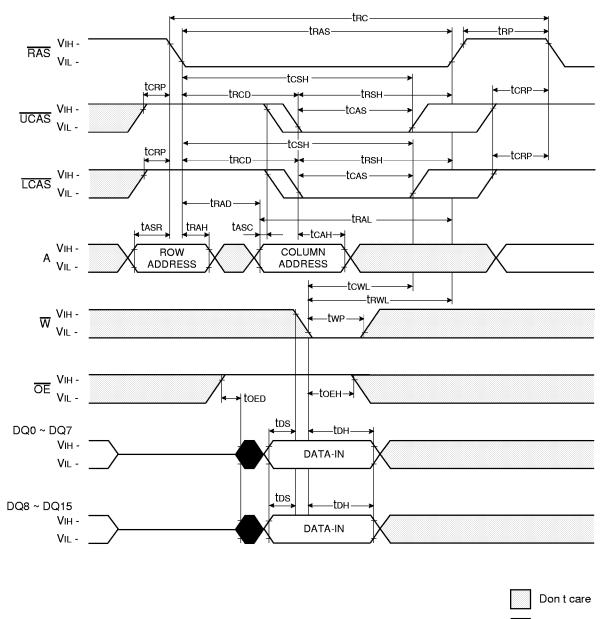
LOWER BYTE WRITE CYCLE (EARLY WRITE)

NOTE : DOUT = OPEN



Undefined

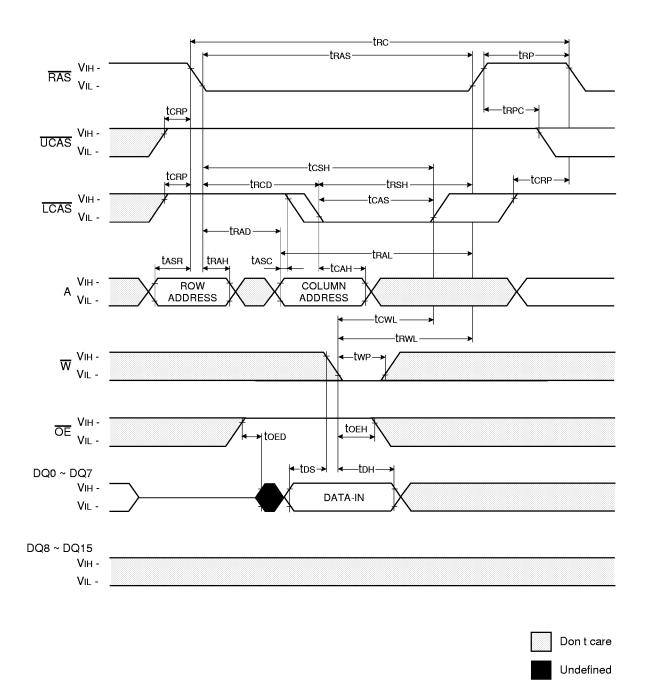
UPPER BYTE WRITE CYCLE (EARLY WRITE)


NOTE : DOUT = OPEN

Undefined

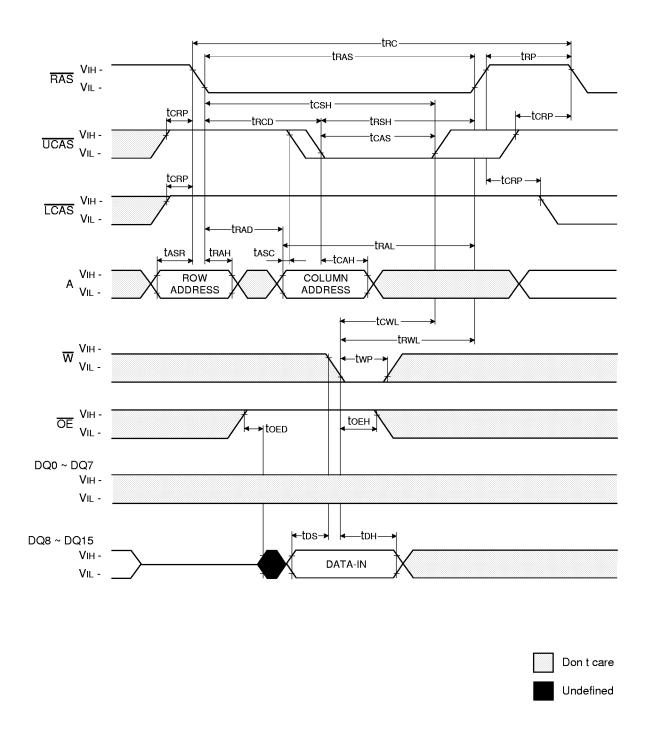
WORD WRITE CYCLE ($\overline{\text{OE}}$ CONTROLLED WRITE)

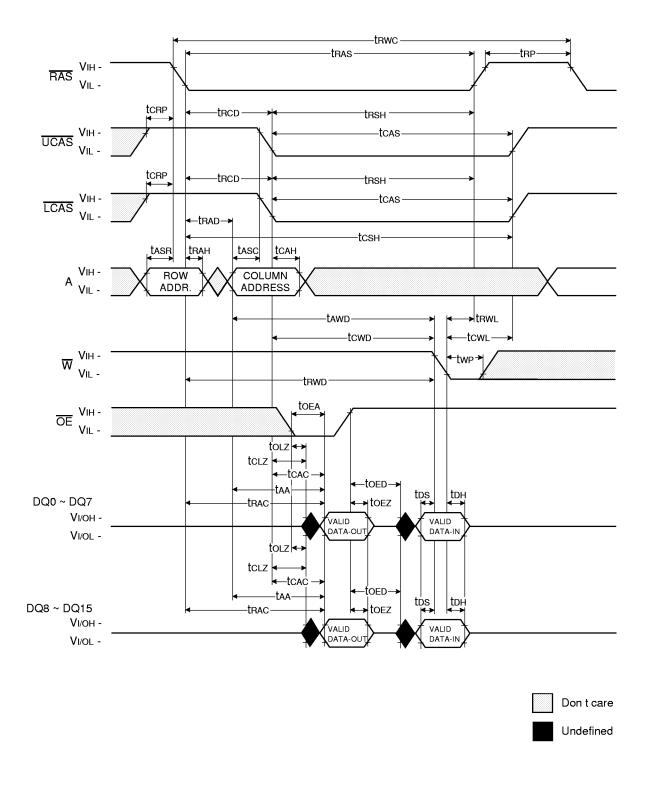
NOTE : DOUT = OPEN



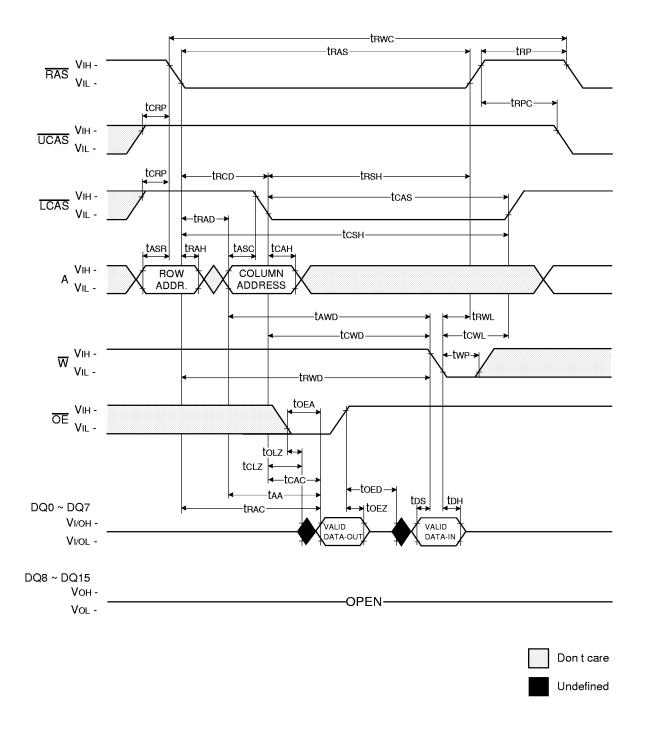
Undefined

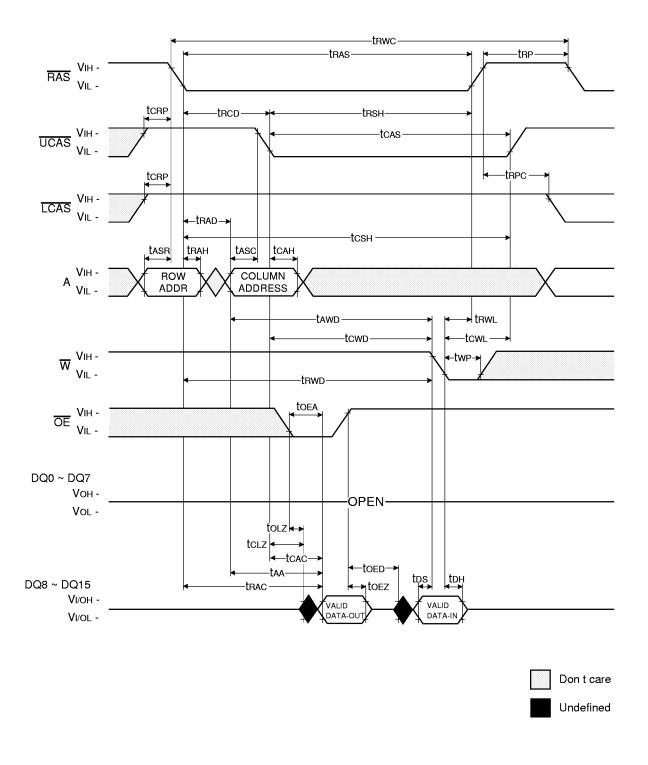
LOWER BYTE WRITE CYCLE (OE CONTROLLED WRITE)

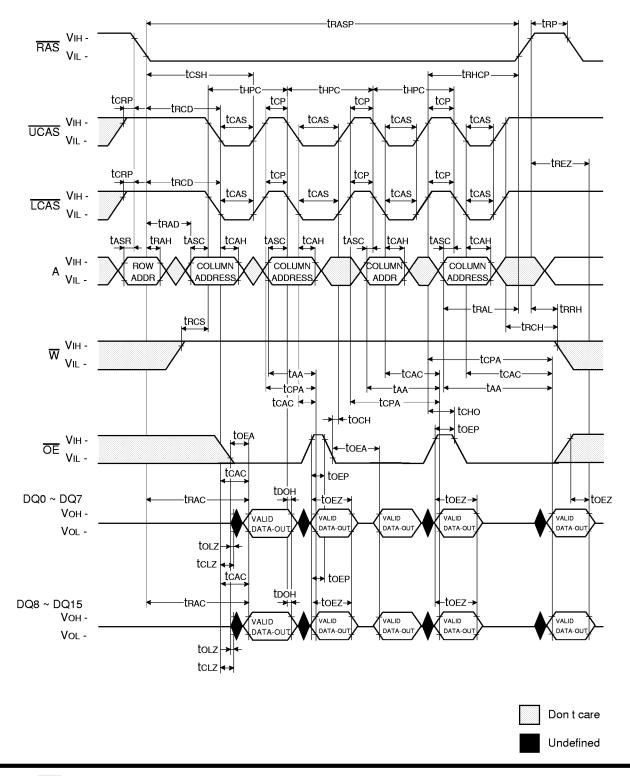

NOTE : DOUT = OPEN

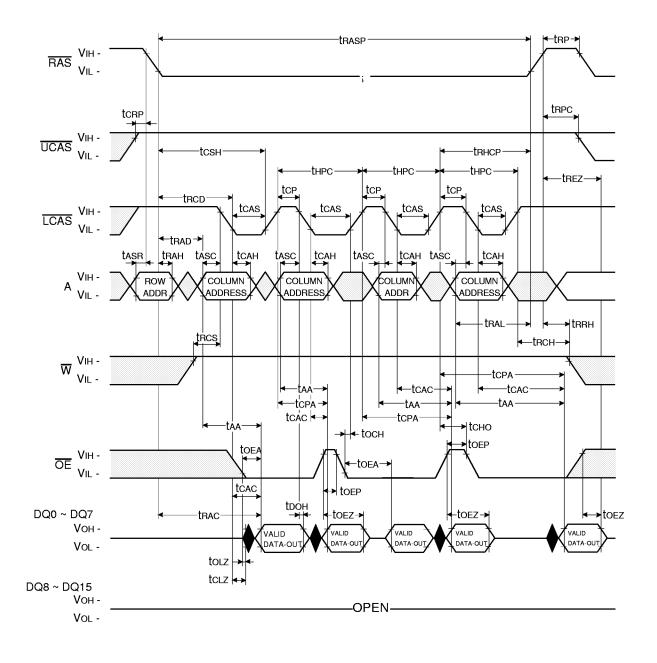


UPPER BYTE WRITE CYCLE (DE CONTROLLED WRITE)


NOTE : DOUT = OPEN

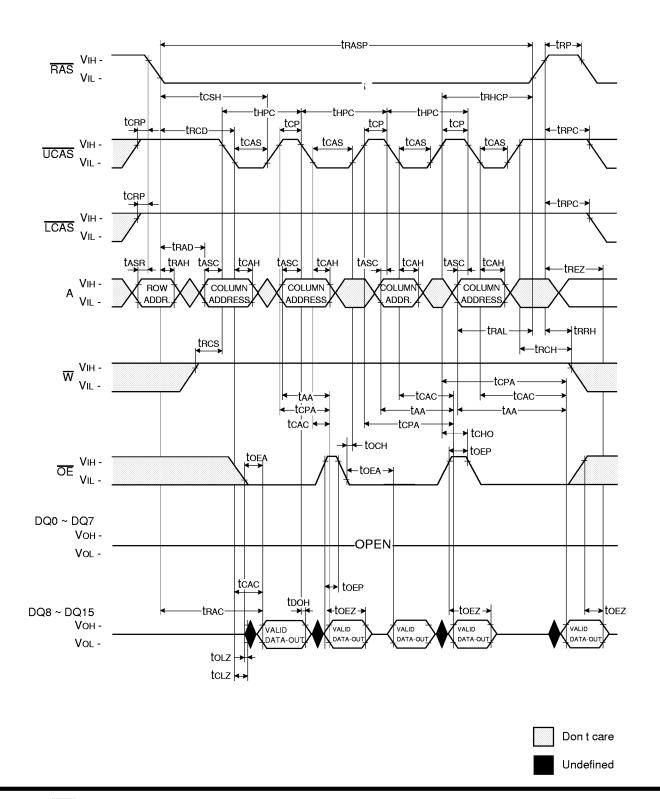

WORD READ - MODIFY - WRITE CYCLE

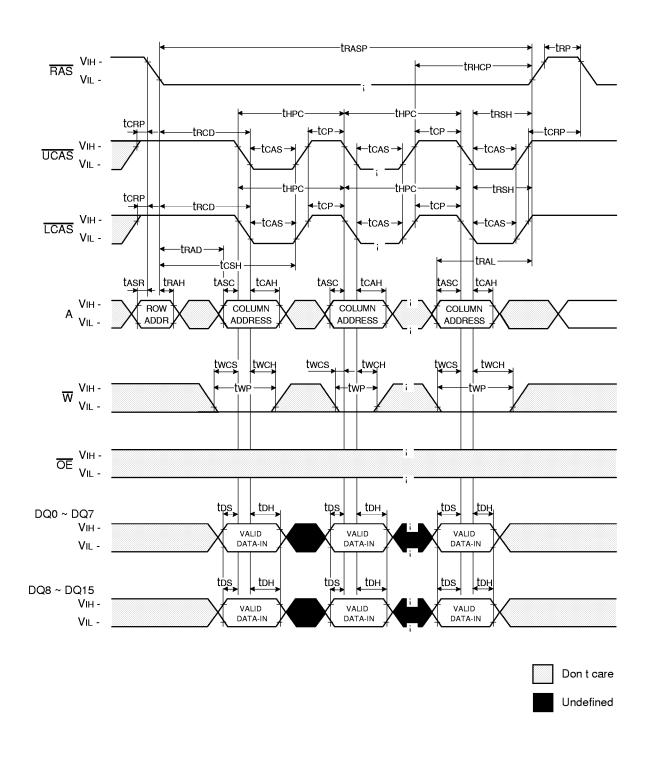

LOWER-BYTE READ - MODIFY - WRITE CYCLE


UPPER-BYTE READ - MODIFY - WRITE CYCLE

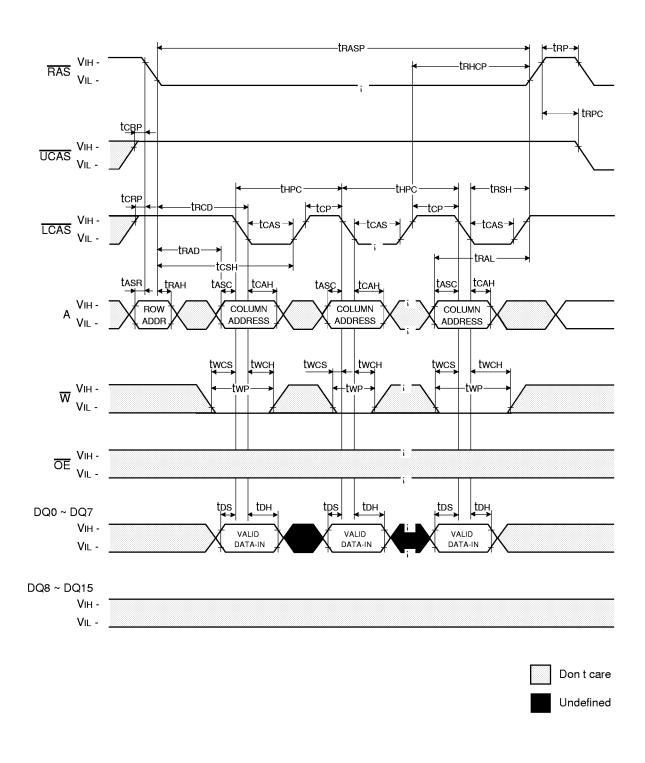
HYPER PAGE MODE WORD READ CYCLE

HYPER PAGE MODE LOWER BYTE READ CYCLE

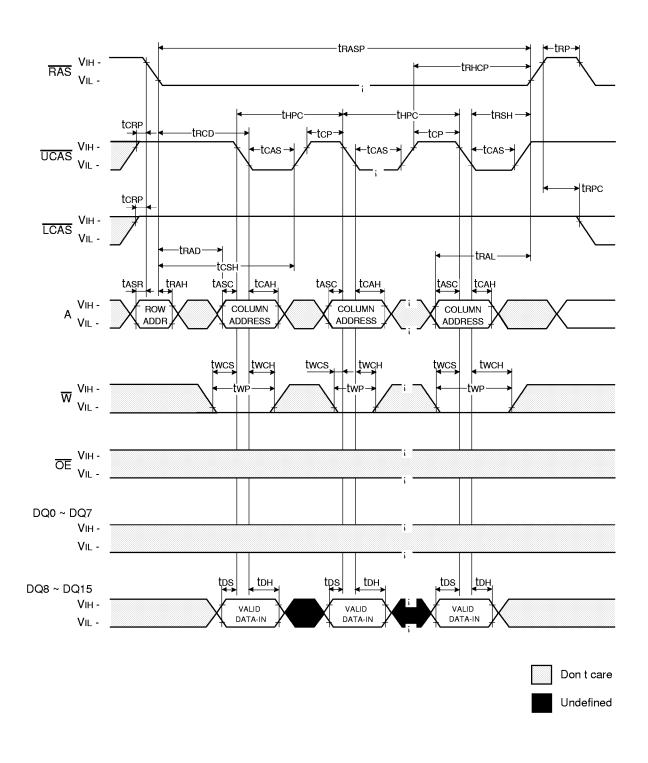



CMOS DRAM

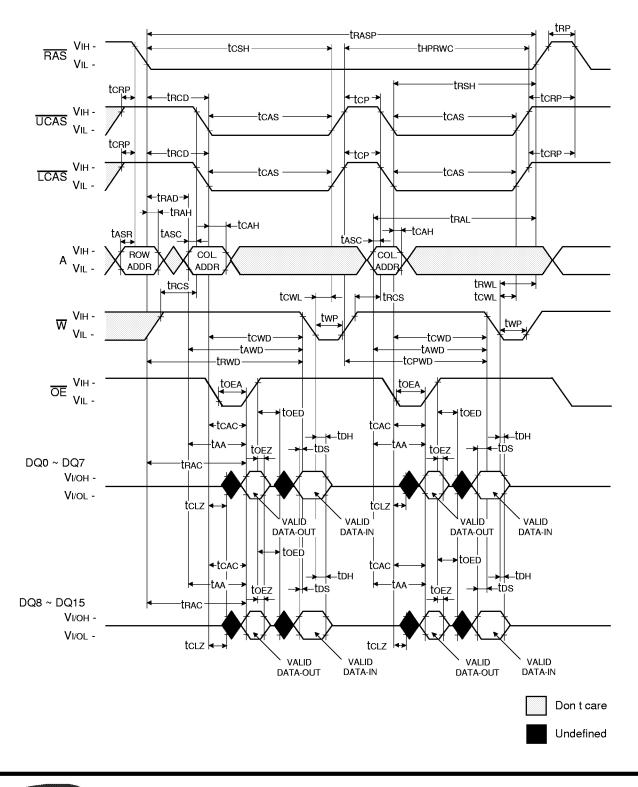
HYPER PAGE MODE UPPER BYTE READ CYCLE


HYPER PAGE MODE WORD WRITE CYCLE (EARLY WRITE)

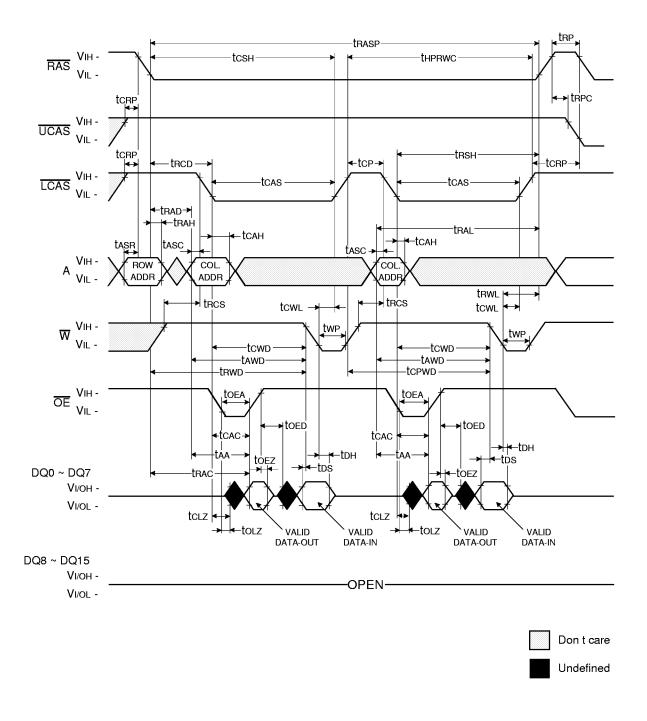
NOTE : DOUT = OPEN


HYPER PAGE MODE LOWER BYTE WRITE CYCLE (EARLY WRITE)

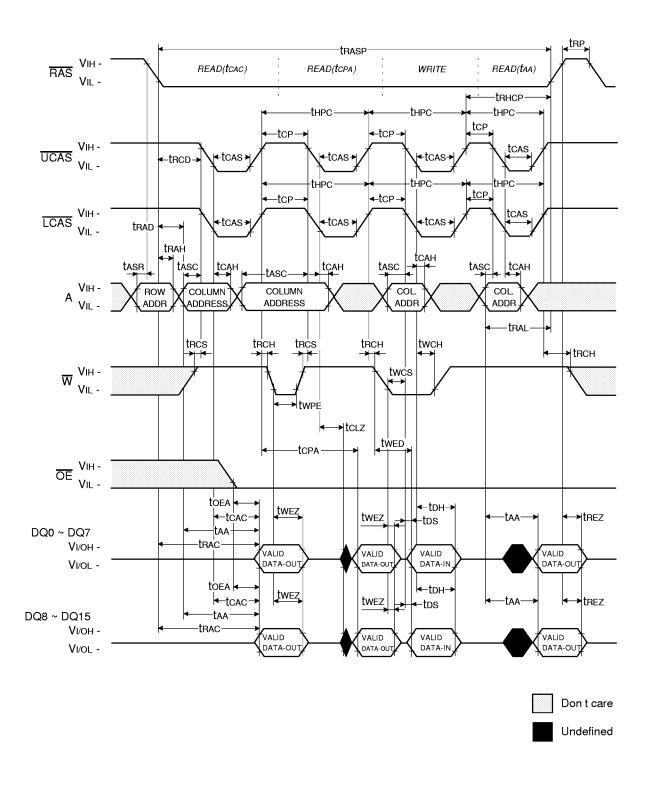
NOTE : DOUT = OPEN



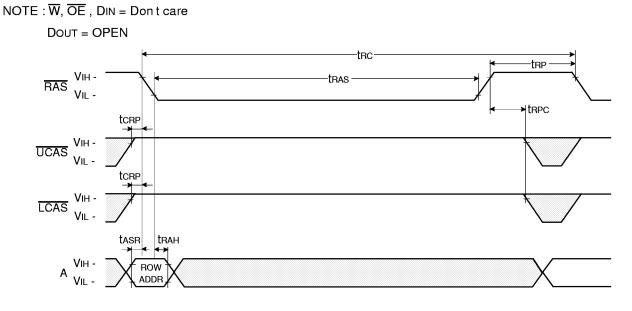
HYPER PAGE MODE UPPER BYTE WRITE CYCLE (EARLY WRITE)


NOTE : DOUT = OPEN

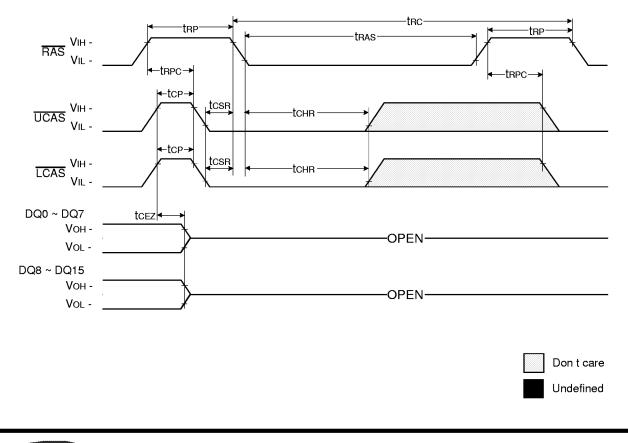
HYPER PAGE MODE WORD READ - MODIFY - WRITE CYCLE


HYPER PAGE MODE LOWER BYTE READ - MODIFY - WRITE CYCLE

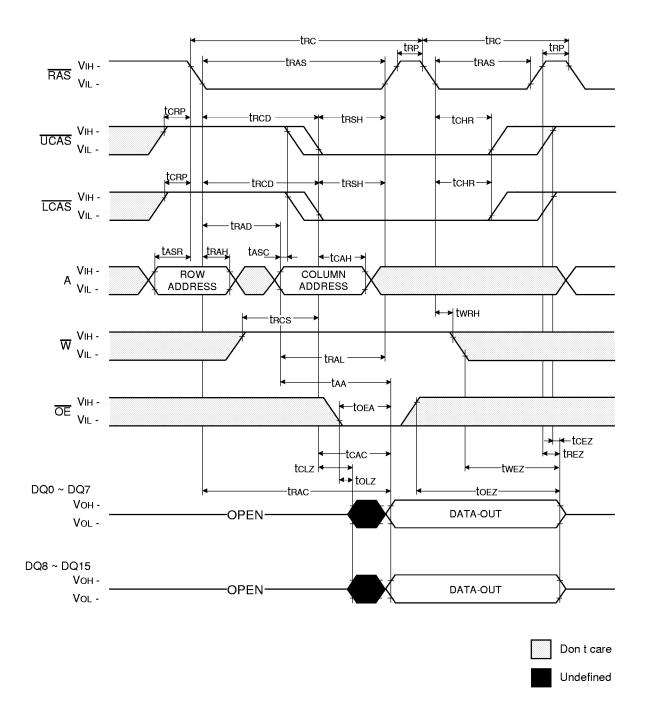
HYPER PAGE MODE UPPER BYTE READ - MODIFY - WRITE CYCLE



HYPER PAGE READ AND WRITE MIXED CYCLE

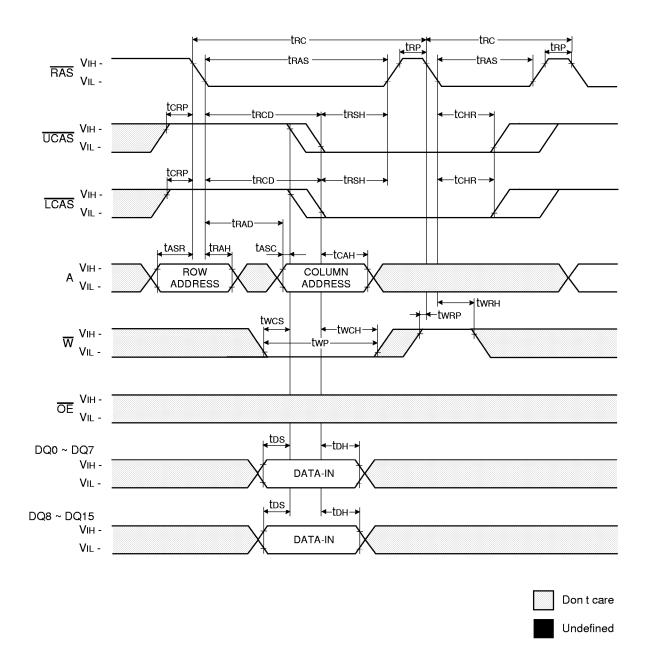


RAS - ONLY REFRESH CYCLE



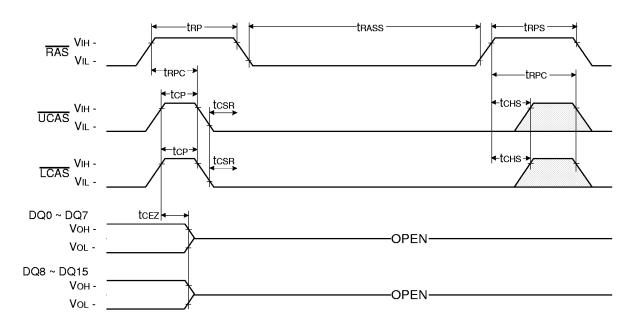
CAS - BEFORE - RAS REFRESH CYCLE

NOTE : \overline{OE} , A = Don t care

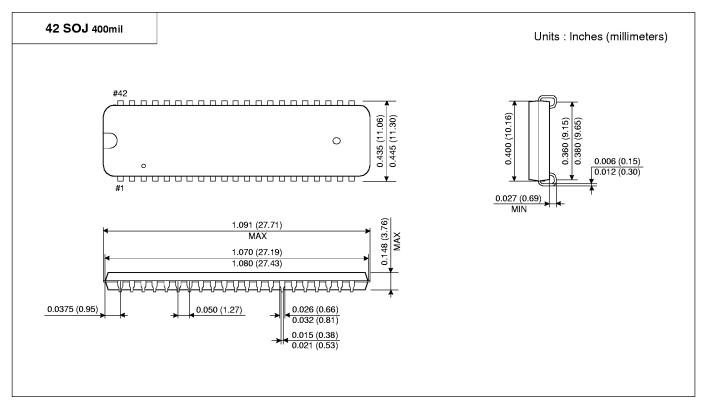


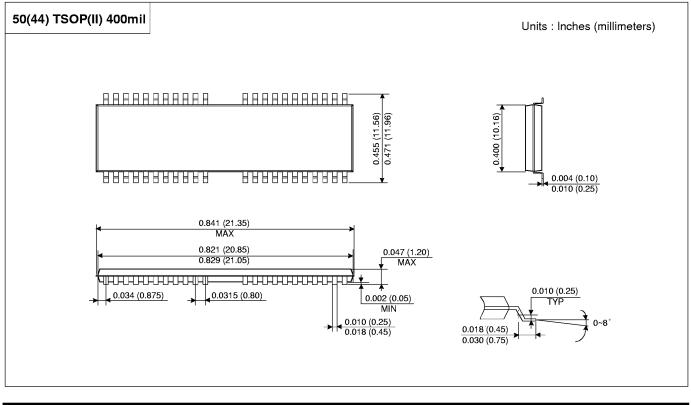
HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)


NOTE : DOUT = OPEN

CAS - BEFORE - RAS SELF REFRESH CYCLE


NOTE : \overline{OE} , A = Dont care



PACKAGE DIMENSION

SAMSUNG ELECTRONICS

CMOS DRAM

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.